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Abstract 

 

This paper examines the generalisation properties of various types of neural network such as 

radial basis function systems and the multi layer perceptron (MLP). It is concluded that their 

behaviour can be explained in terms of low pass interpolation in which discrete training 

examples of a function are implicitly convolved with the impulse response of a low pass filter 

to produce an estimate of the function for previously unseen arguments. 

 

A different form of neural network in the form of a single layer look up perceptron (SLLUP) 

is described, and this type of perceptron is shown to also generalise by low pass interpolation. 

However, the SLLUP can learn reliably and rapidly compared to the multi layer perceptron 

and experiments are described which show that it compares well with the MLP on problems 

such as speech recognition and text-to-speech synthesis. 

 

1.0 Introduction 

 

In this paper the nature of generalisation by neural networks is  related to the  established 

signal processing concepts of filtering, convolution and interpolation and it is argued that 

neural networks such as the multi layer perceptron [1] and radial basis function systems [2] 

are examples of  low pass interpolating systems which can only generalise on data which 

exhibits simple clustering. Although  limited, this form of generalisation is often very useful 

when the data being processed by the net represents physical quantities, and in this paper an 

alternative low pass interpolating perceptron is described which is able to perform this type of 

generalisation but with fast learning and little computation compared to the MLP and RBF. 

 

The  perceptron incorporates n-tuple pattern recognition techniques [3] in an single layer 

architecture to produce a single layer look up perceptron  (SLLUP) whose hardware 

realisation could be almost identical to WISARD [4] but whose modus operandi  is very 

different. The SLLUP is based on a non-linear adaptive filter proposed by Johnston [5] which 

has been used for echo cancellation and is functionally similar to the cerebullar model 

articulation controller (CMAC) [6] used in learning control systems. It is shown that this type 

of system can be used in most of the applications which are currently seen as the domain of 

neural networks such as the multi layer perceptron (MLP). The SLLUP can learn the same 

types of non-linear mappings as an MLP but with a fraction of the training and computation, 



and an additional very desirable property of the SLLUP is that it produces a quadratic error 

surface and so convergence to optimal performance is assured. 

 

It will be shown that the SLLUP is basically an interpolation system which is able to generate 

an estimate of a continuous mapping function from a sparse set of training examples and, as 

will be demonstrated, is well suited to dealing with simple non-linear mappings such as parity 

detection. 

 

The ability of the SLLUP to work on the very complex mapping problems of speech 

recognition and text to speech synthesis is also examined and compared with the performance 

obtainable using the  multi-layer perceptron. It will be seen that  the SLLUP can very nearly 

equal the performance of the MLP in these problems, suggesting that the MLP also does little 

more than a straightforward sample interpolation. 

 

2.0 Generalistion by Neural Networks 

 

Any type of neural network can be visualised as a vector transformer which accepts an input 

vector or pattern X and produces an output vector Y. The functional relationship between Y 

and X is learned from a relatively sparse set of examples of input-output pairs which are 

shown to the network during a supervised learning phase. A typical arrangement for 

performing the learning is shown in Fig.1 in which a training example of the required 

function, f(X), is used as an output target for the transformer. The error between the actual 

output of the transformer and the target is used to adapt the internal parameters of the 

transformer until the error is minimised. In the context of neural networks the internal 

parameters are the 'synaptic weight' values and the error is used in a gradient descent 

algorithm such as back propagation. 

 

A desirable property of neural networks is generalisation which enables the network to 

produce a good estimate of an output Y given a previously unseen value of input X. In many 

cases, this is  simply achieved by some form of interpolation.The process is illustrated in 

Figs. 2a and 2b for a one-dimensional case in which the function underlying a training set of 

discrete input-output  example pairs is y = g (x).  Fig. 2a shows that the input-output 

examples are effectively samples of the function g(x) and although the samples are irregularly 

positioned across the pattern space, many of the ideas used in digital signal processing such 

as Nyquist Sampling, aliasing, filtering and function bandwidths  are also relevant to the 

problem of finding this function.  

 

In particular, if the input-output examples are samples of the underlying function, then the 

complete continuous function should be recoverable by passing them through a suitable low-

pass interpolation filter in which  they  are convolved with the filter's impulse response, as 

illustrated in Fig. 2b. This is the essence of the radial basis function system  and the single 

layer look up perceptron described in this paper. 

 



Insight into the nature of the generalisation obtained using  interpolative filtering is gained by 

viewing the process in the frequency domain .  As an example consider a filter whose impulse 

response is a multivariate gaussian. The filter's frequency response  is low pass and 

consequently  the correct continuous function will only be generated by filtering the sampled 

function if the spectrum of the unsampled function is also low pass as illustrated in Fig.3.  To 

emphasise this limitation, the generalisation will henceforth be called lowpass interpolation to 

indicate that it is only suitable if the spectrum of the function underlying the training samples 

is also low pass.  

 

In contrast to Fig.3 , Fig.4 shows a situation in which the function underlying the samples has 

a bandpass spectrum. Low pass filtering the spectrum of the sampled function will not yield 

the correct continuous function because a frequency shifted version of the wanted continuous 

function is produced.  

 

It may be argued that real world data will only arise from functions having a lowpass 

spectrum and this is often be true for data which has been generated by physical processes 

such as speech articulation, whose generating system contains mechanical inertia which tends 

to cause the spectral content of the function to be dominated by low frequencies. Such 

functions are appropriately generalised by low pass interpolation like the radial basis function 

and, as will be shown shortly,  sigmoidal multi-layer-perceptrons.  

 

However, functions which describe logical processes which relate a set of input conditions to 

an output action are often characterised by bandpass spectra. A simple example is the parity 

function, which contains no energy at zero frequency because the function oscillates in value 

as each input variable changes state. Low pass interpolation is quite inappropriate for 

generalising in this kind of situation and, predictably, it will usually be found that radial basis 

function systems or sigmoidal MLPs fail to work correctly when only trained on a subset of 

possible input-output examples. Correct generalisation is still possible with these types of 

function if a bandpass or multiband  interpolation scheme is used. The Fourier Perceptron [7] 

is an example of such a bandpass interpolating system but, in this paper, the discussion will 

be limited to the case of low pass interpolation. 

 

3.0 Nyquist Sampling, Filtering And Generalisation 

 

Three important points are raised by  viewing the process of function generalisation as 

interpolative filtering of a sparse set of samples of the function. These points are equally 

applicable to lowpass and bandpass interpolation and provide insight into the limitations of 

any generalising machine. 

 

3.1  Nyquist Sampling Criteria 

Sufficient training example must be given such that there is a minimum of two samples per 

cycle of the highest frequency in the mapping function.  This suggests that the complexity of 



a mapping function be specified in terms of its bandwidth, B, and that the maximum interval 

between training examples should be no greater than 1/2B. 

 

3.2  Bandwidth of Interpolation Filters 

To obtain a perfect, continous function from the training examples, the interpolation filter 

should have a rectangular frequency response,  of BHz bandwidth.  This would require an 

infinite length sinc(x) inpulse response which is impossible.  Practical interpolation filters 

should have a bandwidth of as near as possible B Hz, but it must be recognised that finite 

impulse response filters will always produce an error in the estimate of the continuous 

function. 

 

3.3  Uniformity of Function Sampling Interval 

It is very unlikely that the training examples supplied to a supervised learning machine will 

be uniformly distributed across the pattern space. This means that the distances between 

samples of the required mapping function are non-uniform.  The Nyquist Sampling Theorem 

requires at least two samples per cycle of the function if it is to be recovered without loss of 

information. However, a uniform sample interval is not specified and so the irregularity of the 

training points does not necessarily mean that the continuous mapping function cannot be 

recovered.  Unfortunately, a simple interpolation filter is unable to recover a continuous 

function from a set of irregular samples because the function will be non-uniformly scaled in 

proportion to the density of the samples. This is not a problem if the interpolation is learned 

by iteratively adjusting the scale factor of the impulse response of the interpolation filter 

depending on which region of the pattern space it is operating, and an example of this process 

is shown by the Radial Basis Function system described in the next section. 

 

4.0 Radial Basis Functions As Low Pass Interpolators 

 

The operation of the radial basis function network is illustrated in Fig.5 in which a  set of 

basis functions are added together so that their sum closely fits discrete training examples of a 

continuous  function which is to be learned by the system. Typically the basis functions are 

multi variate gaussians whose amplitude, mean value, and variance can be scaled to make the 

network output fit the given examples of the function.  

 

The low pass filter action of the network is easily understood by initially assuming that the 

training samples of the function are regularly spaced and that one basis function is positioned 

over every sample in the function domain. In this situation the output of the network is the 

convolution of the training samples with the radial basis function. Spectrally this is low pass 

filtering because the Fourier transform of the multi-variate gaussian is a low pass frequency 

response. 

 

In general the samples are not positioned regularly and the bandwidth  and amplitude of each 

of the basis functions must be individually adjusted to match the sample rate in its locality. 

Thus, if the samples are very sparse in one region of the pattern space, the bandwidth of the 



basis function has to be reduced so that proper interpolation can occur. This corresponds to 

increasing the variance of the basis function. 

 

Very often it is not possible to place a basis function over every single training sample 

because of computational load, and in this case, the function is sub sampled by using a 

relatively small number of basis functions for its synthesis.  The positions of the basis 

functions in the pattern space are adapted iteratively to optimise the accuracy of the 

synthesised function and the bandwidth of each radial basis function is reduced to reflect the 

lower effective sample rate of the function. 

 

5.0 MLPs As Lowpass Interpolators 

 

Sigmoidal MLPs also perform as low pass interploators and are therefore only capable of 

generalising correctly on functions whose spectrum is lowpass. This behaviour is easily 

understood by looking at the three layer scalar to scalar mapping network with one layer of 

hidden units shown in Fig.6. The output of the network is the weighted summation of the 

sigmoid functions produced by each of the hidden units and the slope and offset of each of 

the functions is set by the weights connecting each of the hidden units to the input units.  All 

the weights are adjusted during learning until the desired output function is synthesised as 

illustrated in Fig.7. 

 

Assuming the weight values feeding into the hidden units are not allowed to become very 

high, each hidden unit produces a smoothly changing basis function which contributes to the 

overall function. Any smooth, non-periodic function, such as the sigmoid, will have a low 

pass spectrum and consequently the MLP will perform generalisation by low pass 

interpolation and is incapable of correctly generalising functions whose spectrum is bandpass. 

 

6.0 The Single Layer Look Up Perceptron (SLLUP) 

 

The SLLUP is  another example of a low pass interpolating system. However, it has clear 

advantages  in terms of learning speed and computation when compared to the MLP and 

RBF, and it will be described in detail in this paper. The SLLUP is based upon a non-linear 

adaptive filter proposed by Johnston [5] and is, in part, inspired by the WISARD [4,15,16] 

system and the technique of n-tuple sampling proposed by Bledsoe and Browning[3]. The 

operation of the SLLUP is best understood in terms of the WISARD  style architecture shown 

in Fig.8, although it will become apparent that the way in which the SLLUP uses the 

architecture, and indeed the practical realisation of the SLLUP, are  different  from WISARD. 

 

The WISARD architecture consists of a retina in which an input pattern, X, is encoded as an 

image of black and white pixels formed by bits of the code representing the scalar elements 

of X. Random connections are made onto the pixels in the image and groups of n  

connections are formed into n-tuples which are used to address a large number of RAMs. The 

RAMs themselves are grouped into 'neuron' blocks called discriminators and the outputs of 



all the RAMs in the ith block are added to form, y i, the value of the i th element of the output 

vector Y.  

 

WISARD is a pattern classifier  whose function is to produce a high score at the output of a 

single class  discriminator when a pattern belonging to that class is applied to the retina. This 

is achieved by associating a single discriminator with each of the pattern classes to be 

recognised and  then applying example patterns of each class. A value of '1' is stored in each 

addressed location of the RAMs in the discriminator and it can be shown [8] that after 

training with many examples, the output value produced by the  discriminator for class Ci is 

approximately proportional to class conditional probability, P(Ci|X), of the input pattern X.  

The conditional probabilities are then used to perform  Bayesian Classification of input 

patterns of unknown class. Various modifications can be made to impove the estimate of the 

class conditional probabilities such as making the value of a RAM location equal to the 

number of times it has been addressed during training, rather than '1' [9]. However, the 

fundamental function is to provide a set of probability estimates which can be used for 

Bayesian Classification. 

 

In contrast to the WISARD pattern classifier, most supervised neural nets are designed to 

learn arbitrary mapping functions  between input and output vectors. The SLLUP uses  n-

tuple sampling techniques to implement arbitrary mapping functions in the same way as a 

conventional neural net but with the computational simplicity and learning reliability of the 

WISARD system.  

 

The SLLUP can be implemented using the same hardware as the WISARD with the 

exceptions that each RAM location must be several bits wide so that a wide range of values 

can be represented, no class is associated with each of the discriminators, and, most 

importantly, a different training algorithm is used. In reality, it is not practical to implement 

the SLLUP using a WISARD style architecture because of its inefficient partitioning of 

memory, and it is usually better to use a single, large multiplexed memory in conjunction 

with hash addressing rather than small individual RAMs with n-tuple connections. 

 

In the SLLUP mode of operation, the output of each 'discriminator' forms an element of the 

output vector of the SLLUP and the system is trained by applying a vector X to its input 

which causes a specific set of n-tuple  addresses to be generated that access corresponding 

contents in each of the RAMs.  The summation of the outputs of each group of RAMs 

produces the elements of the output vector Y.  This vector is compared with the desired 

output T and the resultant error vector, E, is used to modify the values of the currently 

addressed RAM locations so that next time the same input vector is applied, the output Y is 

nearer to the desired output T.  

 

Repeated application of different training vectors allows the system to learn the required 

input - output mapping Y= f(X). It is important to notice that with appropriate choice of  n-

tuple order and number of RAMs in each neuron block, the system can estimate the best 



function f(X) to fit a rather sparse training set.  That is, it is not necessary to expose the 

machine to all possible input-output vector pairs because it is able to interpolate the required 

function between training points.  This  property will be analysed in more detail later in the 

paper. 

 

6.1 Analysis of the SLLUP Learning Procedure 

 

The adaptation of the RAM contents to develop the required mapping function is performed 

using the steepest descent algorithm [10,17] to minimise the mean square error between the 

actual outputs and target outputs of the system. It is therefore necessary to obtain a value for 

the derivative of the average error power with respect to the values stored in each location of 

each RAM so that the required change in each RAM location value can be determined.  

 

Each RAM in the system is addressed by an n-tuple  whose value depends on the vector X 

contained in the input image. Thus, the output of each RAM in the system depends in some 

complex way on X, such that the output of the j th RAM in the i th 'neuron' block can be 

expressed as Cij(X). The output of the ith  neuron is then given by (1) where Q is the number 

of RAMs per neuron. 
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If the target output vector when X is input is T=[t1...tN], then (1) can be used to express the 

mean square output error of the system as: 
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Equation 2 shows that the highest power term involving Cij(X) in the expression for mean 

square error is two.  This indicates a single minimum, quadratic surface, and so convergence 

to a global optimum is guaranteed using a gradient descent algorithm. The gradient term 

required is simply calculated from (2) as: 
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where ei is the difference between the output of the ith neuron and its target value.  So, the 

algorithm for modifying the RAM contents becomes: 
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6.2 The SLLUP Interpolation Kernel: 

 

It can be shown that the SLLUP performs generalisation by low pass filtering the training 

samples in the same way as a radial basis function network. The basis functions or 

interpolation kernels are generated implicitly by the architecture of the SLLUP and their form 

depends strongly on the way in which the input vector X is encoded, but it will be seen that 

typically they have a double sided decaying exponential shape. The frequency response of a 

low pass filter having this kind of impulse response is far from an ideal 'brick wall' 

interpolation filter, but the poor cut-off response is not a problem if the mapping function is 

sampled at a sufficiently high rate that insignificant amounts of aliasing occur. This means 

using sufficient numbers of examples in training the network. 

 

The simplest coding, from an analytical point of view, is bar chart coding in which the value 

of each element of X is represented by the number of 'ON' bits in a bar, and the operation of 

the SLLUP using this code will be analysed before going on to consider other input vector 

encoding techniques using binary and Gray codes as well as other codes with controlled 

redundancy. 

 

6.3 Bar Chart Coding: 

 

A bar chart encoding of a two-dimensional pattern [x1 x2] is shown in Fig.9.  In this example 

each vector element has been quantised to one of 8 values and the vector value shown is [3,4 

]. 

 

Consider a single 1-tuple connection made onto the qth  pixel of the x1 bar.  If x1 > q the 1-

tuple value will be one, whereas if x1 < q then its value is zero.  In pattern space the value of 

'1' or '0' on this connection changes as an imaginary threshold line at x1 = q is crossed.  This 

idea can be extended to the n  connections forming an n-tuple.  The value on each connection  

tells on which side of the associated threshold line the current input pattern lies.  The 

intersections of the lines delineate particular regions of pattern space which are associated 

with particular n-tuple values as shown in Fig.9 for the case of a 4-tuple.  If many n-tuples are 

connected onto the input retina, the combination of n-tuple values delineate smaller and 

smaller regions of pattern space, with each region becoming a regular square as the number of 

n-tuples becomes very high. 

 

The idea of a pattern space dissected by threshold lines can be used to predict the form of the 

basis function  produced by a SLLUP.  Assume that the RAMs  have initially zero contents:  

a single training pattern, X1, is applied to the system and the contents of the locations in the 

RAMs addressed by each n-tuple's value are iteratively modified until they produce the 

specified target output vector, T1.  If another pattern is now applied to the system, starting at 



X1 and gradually moving away from X1, an increasing number of the threshold lines will be 

crossed.  

 

Each time a threshold line is crossed, the address formed by an n-tuple of connections on the 

retina changes value, and one of the RAMS which was contributing to the output value, T1, 

switches to another location and produces zero output.  Thus the output from the SLLUP 

slowly drops towards zero as the input pattern is progressively displaced from the training 

pattern and the shape of the fall in output value defines the form of the implicit basis 

function. 

 

The shape of the basis function can be derived analytically if it is assumed that large numbers 

of n-tuples are connected to the input pattern retina.  Let there be Q RAMs in each 'neuron' 

and D dimensions of length W in the pattern space. The output from each 'neuron'  which is 

caused by an input pattern displaced by  distance x from the position of the training pattern, is 

given by s (x). 

 

                       s(x) = t - r (x) . Cav                                           ( 5 ) 

 

Where t is the output from the neuron when the input is the training pattern, r(x) is the  

number of RAMs whose addresses change when the input pattern is moved x units away in 

pattern space, and Cav is the average contribution of each RAM to the output value at the 

training point. But, 

r(x) = ∫
0

x

 p(x) .  dx                        ( 6 )

 

where p(x) is the probability density of crossing a threshold line at position x in the pattern 

space.  Assuming large numbers of randomly connected n-tuples, this density is just the 

number of active threshold lines, q (x), cutting any axis of the pattern space divided by the 

pattern space width over which the lines are distributed. 

 

ie        p (x) =  
W

q (x)
                                          ( 7 )

 

To solve for p (x), r (x) and s (x) we investigate the variation of q (x) as x increases by  δx. 

  

    q (x + δx)  =  q(x)  -  
D

n
 .  

W

q(x)
 .δx                       ( 8 )

 

 

The n/D  term in the equation arises because crossing a single threshold line renders  the other  

n-l lines within the n-tuple ineffective. i.e subsequent crossing any one of these other lines 

cannot affect the output from the RAM any more because it is already switched to produce 

zero output. The n lines which are effectively removed from play are spread over  D  



dimensions and so the average number of  lines along a particular axis which are deactivated 

by crossing just one threshold line  is n/D. Rearranging (8) gives: 
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This first order differential equation has a solution of: 
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and can be used in conjunction with equations (5) and  (7) to provide the required expression 

for the interpolation kernel. 
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W.D

- n.  |x|

)                    ( 11 )
 

 

The approximate validity of this expression has been confirmed by a computer simulation in 

which  a SLLUP has been trained on a single input pattern and the output caused by other 

patterns covering a 2-D input space recorded. The results are shown in Fig.10a for a system 

using 24  quantization levels for each dimension with  32  RAMS addressed by 4 tuples of 

connections onto the input retina. 

 

6.4 Simple Binary Coding 

 

A pattern may also be presented to a SLLUP as image pixels whose values correspond to 

simple binary encoding of the pattern elements. Random n-tuples of connections are made 

onto the retina in the normal way.  However, the effective basis function created when the 

input vector is binary coded is poorly defined and irregular for the following reasons. 

 

The output from the SLLUP is determined by the number of RAMs in each neuron which are 

addressed with the n-tuple value on which they were trained.  The probability of an n-tuple 

changing value is proportional to the Hamming distance, Dh, , between the current input 

pattern and the training input pattern. Consequently the output of the SLLUP is related to the 

Hamming distance between the training pattern and current input pattern.The relationship 

between Hamming distance and signal space distance for Bar Chart code is linear whereas it 

is non-linear for Binary Code, as shown in Fig.11. 

 

In the latter case, the non-linearity causes the SLLUP output to follow an irregular function as 

the the input pattern is moved away from the training point in  pattern space as shown by the 

computer simulation example of Fig.10b.  In this experiment, simple 5 bit binary coding with 



32 RAMs addressed by 4-tuples of retina connections was used. The irregularity of the basis 

function is evident, but it should also be noted that it is much narrower than in the bar chart 

system.  This is a possible advantage since it means that complex mapping functions can be 

synthesised if sufficient training data is available. 

 

6.5 Gray Coding 

 

Some improvement in the regularity of the basis function can be obtained by using a Gray 

code instead of simple binary code.  Although the Gray code Hamming distance versus signal 

space distance function is not monotonic, it is better than the binary code because the 

Hamming distance only changes by 1 for every 1 unit change in signal. Again, this type of 

encoding has been tested by simulation and the kernel function obtained using a Gray code is 

shown in Fig.10c. 

 

6.6 Other Codes 

 

Further improvements in kernel regularity can be obtained by using introducing redundancy 

into the code. There are a large number of ways of doing this, but a particularly effective 

technique is Redundant Gray Coding  [11] in which each signal value is represented by a 

concatenation of several shifted versions of an R-bit Gray code for the value. Connecting n-

tuples onto all the bits in the new code causes the bumps in the relationship between Dh and 

Ds to be averaged, resulting in a more regular kernel as shown by the simulation results in 

Fig.10d. 

 

7.0 Speech Recognition and Synthesis Problems Using the SLLUP       

 

Earlier work has shown [12] that the SLLUP is able to perform simple non linear mappings 

such as the fuzzy EXOR problem. This is achieved using only small amounts of training and 

with little computation compared to the MLP. In this paper we examine the SLLUP 

performance on two speech mapping problems of very great complexity  on which MLPs and 

some other neural nets have already been tested.  

 

The first mapping problem is speaker independent recognition of utterances of the letters of 

the alphabet. A defined cepstral coefficient representation of many utterances of the letters of 

the alphabet from one large set of talkers must be classified by the SLLUP after it has been 

trained on examples from a separate set of talkers. The database used in this experiment was 

compiled by British Telecom Research Labs and is known as the CONNEX S1 data [13]. The 

SLLUP is trained on approximately 4000 utterances from a balanced mix of 52 talkers and 

then tested on approximately 4000 utterances from another 52 talkers. The utterance length is 

normalised by linear time warping  and is presented to the SLLUP as a set of 15 frames of 8 

Mel Cepstral coefficients. 

 



The second complex problem to which the SLLUP has been applied is text to speech 

synthesis.  In this case orthographic text has to be mapped to a sequence of phoneme codes 

which are then used to drive a hardware synthesiser. The experiment  uses the same database 

as NETSPEAK [14] and is identical in all respects except that the MLP is replaced by a 

SLLUP. The SLLUP is presented with a character taken from English orthographic text and 

has to produce an appropriate phoneme code as output. Clearly the pronunciation of a 

particular character often depends on the word in which it is embedded and so 3 characters on 

either side of the target character are simultaneously presented to the SLLUP. Thus, the 

complete input pattern consists of a context window of 7 characters, each encoded using 11 

bits. The output phoneme is represented using a 19 bit code to represent each of 55 

phonemes. 

 

It is interesting to consider the types of mapping which the SLLUP has to develop to deal 

with each of these two problems. In the speech recognition case, input patterns belonging to 

the same utterance class are likely to cluster together in their N-space and the SLLUP has to 

map the region of N-space enclosing the cluster to a single specified point in the output space. 

There may be several clusters belonging to one class but overall the mapping between input 

and output is smooth, without abrupt transitions. This proposition is supported by the fact that 

moderately good speech recognition systems can be made using nearest neighbour 

classification of the input pattern.  The task of the SLLUP in this case is to interpolate  so 

that previously unseen input patterns which lie between training examples of the same class 

are mapped to the same output code. 

 

The text to speech mapping is very different. The distances between the codes representing 

different characters does not have a simple relationship to the distances between the codes for 

the corresponding output phoneme codes. In other words, the patterns are really symbolic and 

just happen to be represented in a Euclidean space for processing by the neural net. Thus, the 

task of the SLLUP is to detect any logical  structure in the data and failing this, to act as a 

look up table. 

 

7.1 Experimental Results on The Speech Recognition Problem 

 

Tables 1 to 3 summarise the results obtained using the SLLUP as a speech recogniser. Table 

1 shows that a SLLUP using natural binary coding in the retina is able to learn the training set 

very well, but performs poorly on the test set. Moreover, the performance tends to improve as 

the order of n-tuple decreases. Taken together, these two factors suggest that the SLLUP is 

unable to interpolate sufficiently between the training examples because the effective width 

of the interpolation kernel is too small. Reduction of the n-tuple order causes the kernel to 

become wider, with a consequent improvement in performance on the test set.  Increasing the 

n-tuple order makes the system behave more like a look up table, giving better recognition of 

the training set but  an inability to generalise. 

 



      8 Bit Natural Binar y Coding,Retina size 960 bits

2              95%           65%         480 

3              98%           62%         320

4              95%           52%         240

N-tuple Order  Training s et   Test Set   Rams per O/P

 

              Table 1. Speech Recognition Results Using SLLUP with Binary Coded Input. 

 

The kernel width produced using natural binary code is very narrow and a possible solution to 

the poor test set performance is to use a different code in the retina, as demonstrated by the 

results of Table 2. These results were obtained by quantising each of the cepstral coefficients 

to 16 levels and representing them by a bar chart code. As expected, the performance 

improves on the test set and gets worse on the training set. This confirms our hypothesis that 

the natural binary code leads to an over-specific system. The results in Table 2 show an 

improvement in performance as the n-tuple order increases, indicating that in this system,the 

kernel is actually too wide so that with low values of n, over-generalisation is taking place. 

This is supported by the fact that the system has been unable to accurately recognise the 

training set. 

                           

Tuple Order    Training s et    Test Set   Rams per  O/P

2              76%           71%         960

3              81%           75%         640

4              83%           77%         480

6              85%           78%         320

16 Level Thermometer code , Retina size = 1920 bits

 

        Table 2. Speech Recognition Results Using SLLUP With Bar Chart Coded Input. 

 

The recognition accuracy obtained using this system with n=6 is comparable with results 

obtained using a 2 layer, 25 hidden unit MLP on the same data which produced a test set 

accuracy of  81%. The best results obtained using the SLLUP on this data are compared to 

those produced by an MLP in Table 3. 

 
 
             Device                  Training Set   Test Set 
 
 
     MLP, 75 Hidden Units                 97.4%        88.3%  
     (see reference [18])  
 
 
     SLLUP, Tuple Order 8 , 

     32 level Barchart Co de,             97.3%        82.8%  
     480 RAMS per O/P. 

 

                         Table 3. Comparison Between Best Results of SLLUP and MLP. 

 

7.2 Experimental Results On The Text to Speech Synthesis Problem. 

 

In these experiments each of the seven characters in the input window are represented by 11 

bit codes containing approximately equal numbers of '1's and '0's. This is important when 

using a SLLUP because an imbalance in the number of'1's and '0's will cause most n-tuple 



values to always consist of n '1's or n '0's respectively and this renders the n-tuple values 

insensitive to changes in the input vector X. 

 

The results obtained using a SLLUP in the text to speech application are presented in Tables 

4 and 5. Table 4 shows the performance of the SLLUP when the  11 bit codes are placed at 

approximately equidistant positions in 11-space. This coding is therefore completely 

unstructured. As expected, the performance is very poor because the input patterns are really 

symbolic and the interpolation between arbitrary codes effected by the SLLUP is 

inappropriate. Using a high tuple order of 8 gives improved performance on the training set 

because the SLLUP starts to operate as a look-up table. However, the test set performance 

remains poor. 

                      

Tuple Order    Training S et     Test set 

                    34.5%            33.4%           

                    60.8%            55.2%                

           4  

           8  

Coding
 Codes for each character  are approximately       
       equidistant, 11 bi ts long and  
      consisting of  5 '1 's and 6 '0's.

Retina Size 
 = 77 bits

 Rams per O/P

    20

 10

Training:

Testing:

4 blocks of 10,000 charac ters

1 block of 10,000 charact ers

 

      Table 4. Accuracy of SLLUP as Text to Speech Mapper Using Unstructured Input 

Coding. 

 

Table 5 shows the performance of the SLLUP working on a modified set of input codes 

which are chosen so that their mutual distances approximately reflect the perceptual distances 

between the phonemes  which map most frequently to each letter. Using these structured 

codes,  distances in the 11-space have some meaning and so interpolation becomes a more 

appropriate means of generating an output on unseen input data. Predictably the results in 

Table 5 are much better, with high accuracies obtained both on training and test data if 

sufficiently large n-tuples are used. A furthur improvement can be obtained if the frequency 

of commonly occuring words is relected in the content of the training and test sets. This is 

because the very common words in English often have irregular pronunciation rules which 

are hard for the SLLUP to learn unless seen very frequently. McCulloch reports [14] that a 2-

layer, 77 hidden unit MLP can give an 86%  letter to phoneme mapping accuracy which is 

slightly better than the SLLUP result. However, the SLLUP converges relatively quickly and 

shows a trend of improving performance as n-tuple order increases. 

 



    Tuple Order       Tra ining Set   Test set

Coding

 Each code is 11 bits  co nsisting of  5  

'1's and 6 '0's. Distance  between each  
 code reflects the letter  group.

4                 52.2%         52.2%         

8                 72.7%         71.3%

10                78.4%         75.0%

10 **             83.9%         79.9%

Retina Size 

= 77 bits

Rams per O/P

20

10

8

8

Training:

Testing: 5 blocks of 10,000 charac ters

8 blocks of 10,000 charac ters

** frequency weighted traini ng and test data

 

         Table 5. Accuracy of SLLUP as Text to Speech Mapper Using Structured Input Coding. 

 

8.0 Conclusions 

 

It has been  argued that the purpose of any supervised learning network is perform 

generalisation by synthesising a continuous non-linear mapping function from a sparse set of 

training examples of the function. The continuous function can be generated by interpolation  

between the discrete examples of the function using a low pass filter and radial basis function 

networks and MLPs are examples of systems which utilise this principle. 

 

Important implications of this argument are that the number of training examples must be 

sufficient such that the function is sampled at least at the Nyquist rate and that the 

generalisation which is produced by the filtering is only correct if the spectrum of the 

function underlying the training data is dominated by low frequencies. 

 

The single layer look up perceptron is another example of a low pass interpolating network 

which synthesises the  required mapping function by effectively convolving the discrete 

training function samples with a kernel function which is analogous to the impulse response 

of a low pass interpolation filter. 

 

The SLLUP uses comparable amounts of memory to the MLP for all but the most trivial 

functions and in general will learn the required mapping function much faster than an MLP 

because it is a single layer machine in which error gradients used for its adaption can be 

calculated directly from the output error. Moreover, because it is a single layer machine, the 

error surface for the SLLUP is  quadratic and it therefore always converges to a minimum 

error. 

 

It has been shown that the SLLUP is able to operate as a speaker independent recogniser with 

almost as high accuracy as an MLP which suggests both that speech recognition can be 

effectively 



performed by interpolation and, perhaps more important, that the MLP also appears to be 

doing little more than interpolation. This is supported by the use of a SLLUP for text to 

speech synthesis which again gave a performance only slightly inferior to an MLP. 

 

Although multi dimensional interpolation is a non trivial task, our  arguments suggest that 

many problems to which neural nets such as the MLP are currently applied with enthusiasm 

might be more efficiently solved by using explicit, classical interpolation techniques. More 

importantly, there are many logical problems which  embody functions which have a 

bandpass spatial spectrum and which cannot be correctly generalised by low pass 

interpolation, MLPs, RBFs or SLLUPs. New types of neural network are needed to deal with 

these classes of problem. 
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                                                Fig.1. Supervised Learning System 
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                         Fig. 2a Training Examples as Samples of The Underlying Function 
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                     Fig.2b Recovering a Continuous function from its samples by filtering. 
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                          Fig.3 Spectral view of generalisation by low pass interpolation. 
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          Fig.4 Spectral view of incorrect generalisation of a function  with bandpass spectrum. 
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                               Fig.5 Synthesis of  function using radial basis functions. 
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                                       Fig.6  MLP as a synthesiser of a mapping function. 
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                 Fig.7 Synthesis of mapping function from weighted sum of hidden unit outputs. 
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                                 Fig.8 WISDARD Architecture used as a SLLUP. 
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                                           Fig.9 Bar Chart Coding of input vector.       

                 Figs.10a- 10d. Interpolation Kernels of a function Y in a 2- Dimensional  

                            pattern space (x1,x2), Using a Variety of Input Codings. 
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               Fig.10a. Bar chart coding.                                           Fig.10b.Binary coding. 
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                       Fig.10c.Gray coding.                                Fig.10d.Redundant Gray coding. 
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           Fig.11 Hamming distance vs signal space distance for bar and binary codings. 
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